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What are spin currents in Heisenberg magnets?
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Abstract. We discuss the proper definition of the spin current operator in Heisenberg magnets subject
to inhomogeneous magnetic fields. We argue that only the component of the naive “current operator”
JijSi × Sj in the plane spanned by the local order parameters 〈Si〉 and 〈Sj〉 is related to real transport
of magnetization. Within a mean field approximation or in the classical ground state the spin current
therefore vanishes. Thus, finite spin currents are a direct manifestation of quantum correlations in the
system.

PACS. 75.10.Jm Quantized spin models – 75.10.Pq Spin chain models – 75.30.Ds Spin waves – 73.23.Ra
Persistent currents

1 Introduction

In a recent Letter [1] and a subsequent paper [2] we
have calculated the persistent spin currents in meso-
scopic Heisenberg rings subject to inhomogeneous mag-
netic fields. We have emphasized the close analogy be-
tween this phenomenon and the well known persistent
charge currents in mesoscopic metal rings pierced by an
Aharonov-Bohm flux. In the ensuing discussions with sev-
eral colleagues we have become aware of the fact that the
definition of the spin current operator in Heisenberg mag-
nets subject to inhomogeneous magnetic fields is not ob-
vious. In this note we shall attempt to clarify this point.

A related problem, which will not be discussed in this
work, is the definition of the spin current operator in semi-
conducting electronic systems with strong spin-orbit inter-
actions. Recently, Rashba [3] pointed out that also for this
case the precise meaning of the concept of a spin current
is rather subtle. In particular, he emphasizes that spin
currents in thermodynamic equilibrium, which arise with
the standard definition of the spin-current operator used
in the literature, are unphysical and should be regarded
as background currents which do not correspond to real
transport of magnetization. A clear understanding of this
concept is essential for the highly active field of informa-
tion processing using spin degrees of freedom subsumed
under the name of spintronics [4].

For itinerant systems the spin is an intrinsic property
of the charge carriers and is carried around with their mo-
tion. For localized spin systems considered here, transport
of spin is a consequence of the time evolution of the mag-
netization. For special cases the transport can be ascribed
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to the movement of quasi-particles as magnons or spinons
and again a simple physical picture emerges [5].

In this context, it is also interesting to note that in ef-
fective low-energy models for ferromagnets involving only
the spin degrees of freedom even the concept of the lin-
ear momentum is not well defined [6]. In general, the dy-
namical equation for the spin degrees of freedom have to
be supplemented by kinetic equations for the underlying
fermionic excitations.

At the heart of the ambiguities involved in defining
a spin current operator both for itinerant systems with
spin orbit interaction as well as for Heisenberg magnets in
inhomogeneous fields is the fact that the magnetization is
not strictly conserved for these systems. Still, the intuitive
concept of magnetization transport should also be useful
for these systems and one is therefore led to define effective
current operators, as we will do in this note for the case of
a Heisenberg magnet in an inhomogeneous magnetic field.

2 Problems with the naive definition
of the spin current operator

Consider a general Heisenberg magnet with Hamiltonian

Ĥ =
1
2

∑

i,j

JijSi · Sj − gµB

∑

i

Bi · Si , (1)

where the sums are over all sites ri of a chain with pe-
riodic boundary conditions, the Jij are general exchange
couplings, and Si are spin-S operators normalized such
that S2

i = S(S + 1). The last term in equation (1) is the
Zeeman energy associated with an inhomogeneous mag-
netic field Bi = B(ri). We assume that the magnetic
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Fig. 1. Classical spin configuration m̂i of a nearest-neighbor
ferromagnetic Heisenberg ring in a radial magnetic field Bi.

field at each lattice site is sufficiently strong to induce
permanent magnetic dipole moments mi = gµB〈Si〉, not
necessarily parallel to Bi, where 〈. . .〉 denotes the usual
thermal average. The simplest geometry is a ferromag-
netic ring in a crown-shaped magnetic field, as illustrated
in Figure 1. This geometry is used in the following for il-
lustrative purposes, but our arguments are not restricted
to this case. The Hamiltonian (1) implies the equation of
motion

�
∂Si

∂t
+ hi × Si +

∑

j

JijSi × Sj = 0 , (2)

where hi = gµBBi. Note that the last term in equation (2)
can be written in the form

∑
j Ii→j , with

Ii→j = JijSi × Sj . (3)

By analogy with the discrete lattice version of the equa-
tion of continuity for charge currents, it is tempting to
identify Ii→j with the operator whose expectation value
gives the spin current from site i to site j. In this work
we shall argue that this identification is only correct for a
strong homogeneous magnetic field, where in equilibrium
the expectation values 〈Si〉 of the spins at all sites are
aligned along the same spatially constant direction of the
field. Then hi × 〈Si〉 = 0. Using the fact that equilibrium
averages are time independent, d

dt〈Si〉 = 0, we conclude
from the equation of motion (2) that the lattice divergence
of the spin current in the presence of a homogeneous mag-
netic field vanishes

∑

j

〈Ii→j〉 = 0 . (4)

For a one-dimensional ring with nearest neighbor hopping
this implies for each site i

〈I i→i+1〉 + 〈Ii→i−1〉 = 〈Ii→i+1〉 − 〈I i−1→i〉 = 0 , (5)

so that the same spin current 〈I〉 = 〈Ii→i+1〉 flows
through each link of the ring. However, the equation of
motion contains only the divergence of the current, so that
it does not fix the value of 〈I〉. From the point of view of
elementary vector analysis this is a consequence of the
fact that both the divergence and the curl are necessary

to uniquely specify a vector field. Because the equation of
motion contains only the divergence, circulating spin cur-
rents cannot be calculated using the equation of motion.
In fact, even the definition of the spin current operator in
a geometry permitting circulating spin currents cannot be
deduced from the equation of motion. Of course, for a ring
with a collinear spin configuration we know that 〈I〉 = 0,
so that there are no circulating currents.

The case of a non-uniform magnetic field is more in-
teresting. In general, the spin configuration in the ground
state is then also inhomogeneous. For example, let us con-
sider a radial magnetic field Bi = |B|ri/|ri| situated at
constant latitude ϑi = ϑ, as shown in Figure 1. We as-
sume that the direction m̂i = mi/|mi| of the magnetic
moments mi = gµB〈Si〉 trace out a finite solid angle Ω
on the unit sphere in order-parameter space as we move
once around the ring. If we consider a nearest neighbor
Heisenberg ferromagnet with Jij = −J(δi,j+1 + δi,j−1)
then for |h| ≡ gµB|B| � JS(2π/N)2 the classical ground-
state configuration m̂i is radial as well, with a slightly
different latitude ϑm satisfying [1]

sin(ϑm − ϑ) = −(JS/|h|) [1 − cos(2π/N)] sin(2ϑm) . (6)

The main point of this work is that in the presence
of an inhomogeneous magnetic field the spin current op-
erator is not simply given by equation (3). The fact that
the expectation value of equation (3) cannot be a spin
current is perhaps most obvious if we consider the sim-
ple case of classical spins in a star-shaped magnetic field,
corresponding to ϑm = ϑ = π/2 in Figure 1. In this case
equation (3) gives for a ring with evenly spaced sites at
zero temperature

Ii→j = Jijez sin(2π/N), (7)

where ez is a unit vector perpendicular to the plane of the
ring. Note that at the classical level the statics and dynam-
ics of a Heisenberg magnet are completely decoupled. Be-
cause the classical ground state does not have any intrinsic
dynamics, it does not make any sense to associate a spin
current with it which would correspond to moving mag-
netic moments. Furthermore, if the classical Heisenberg
model is provided with Poisson bracket dynamics, the
classical ground state yields a stationary solution, since
it minimizes the energy. Clearly, such a completely sta-
tionary state cannot be used to transport magnetization.
We conclude that for twisted spin configurations equa-
tion (3) is not a physically meaningful definition of the
spin current operator.

3 Effective spin currents with correct classical
limit

In order to arrive at a better definition, consider a non-
equilibrium situation, i.e. start with a given density ma-
trix at time t = 0 and let the system evolve according
to the unitary dynamics generated by the Hamiltonian in
equation (1). The equation of motion (2) then directly
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translates to a relation for the local and instantaneous
order parameter

∂t〈Si〉t + hi × 〈Si〉t +
∑

j

〈Ii→j〉t = 0 . (8)

Here, 〈. . . 〉t denotes an average with respect to the
time dependent density matrix. It is then reasonable to
demand that a transport current can lead to an accumu-
lation of magnetization, i.e. a change in the magnitude
of the local order parameter in time. For this magnitude,
we obtain the equation of motion

∂t|〈Si〉t| +
∑

j

m̂i(t) · 〈Ii→j〉t = 0 , (9)

where m̂i(t) = 〈Si〉t/|〈Si〉t| is the time dependent di-
rection of the order parameter. Note that only the lon-
gitudinal component of the naive “current operator” ap-
pears in this continuity equation without source terms. It
is precisely this contribution which we have identified as
the dominant one in our spin-wave calculation in [1]. The
transverse components lead to a change in the direction
of the local order parameter, but they are largely counter-
acted by the magnetic field term that acts as a source and
generates a precession. If one wants to discuss the elec-
tric fields generated by the magnetization dynamics, one
either has to take into account both the current Ii→j and
the local precessional motion, or devise a way to make the
cancellation explicit by including part of the “transverse
current” in an effective magnetic field. We will attempt
the second route here.

That this is a sensible way to proceed can be appreci-
ated by a simple approximate calculation. In the classical
ground state, the magnetization aligns parallel to the
sum of the external and the exchange field. A necessary
condition for the minimum of the classical energy is the
invariance under small variations of the directions of the
magnetization. This leads to the condition [1]

heff
i × 〈Si〉 = 0, heff

i = hi −
∑

j

Jij〈Sj〉. (10)

Note that the effective magnetic field contains a part of
the exchange interaction, which therefore should not be
included into the definition of the spin current operator
to avoid double counting. Rewriting the exact equation
of motion (2) in terms of the effective magnetic field heff

i
defined in equation (10), we obtain

�
∂Si

∂t
+ heff

i × Si +
∑

j

Ieff
i→j = 0 , (11)

where
Ieff

i→j = JijSi × [Sj − 〈Sj〉] . (12)

Obviously,
〈Ieff

i→j〉 = Jij [〈Si × Sj〉 − 〈Si〉 × 〈Sj〉] , (13)

which vanishes identically in the classical ground state, or
if the spins are treated within the mean-field approxima-
tion, where the spin correlator is factorized. Physically,

this is due to the fact that within the mean-field approx-
imation the Heisenberg exchange interaction is replaced
by an effective magnetic field, so that the different sites
are uncorrelated and there are no degrees of freedom to
transfer magnetization between them. In this work we dis-
cuss only localized spin models, so that charge degrees are
not available to transfer magnetization between different
sites.

4 New definition of the spin current operator

The definition of Ieff
i→j in equation (12) has the disad-

vantage of not being antisymmetric with respect to the
exchange of the site labels, although its expectation value
is obviously antisymmetric. In order to cure this problem
and to generalize the concept of an effective current op-
erator beyond the mean-field description, we propose the
following definition,

Ĩi→j = Ii→j − γij(γij · Ii→j) , (14)

with the unit vector

γij =
mi × mj

|mi × mj | . (15)

Thus, we interpret only the projection of Ii→j onto the
plane spanned by the two local order parameters mi and
mj as a physical transport current. The contribution sub-
tracted in equation (14) can be incorporated in an effective
magnetic field. More precisely, the equilibrium expectation
value of the exact equation of motion (2) can be rewrit-
ten as

heff
i × 〈Si〉 +

∑

j

〈Ĩi→j〉 = 0 , (16)

with the effective magnetic field now defined as

heff
i = hi −

∑

j

〈Si × JijSj〉 · γij

[〈Si〉 × 〈Sj〉] · γij

〈Sj〉 . (17)

This reduces to equation (10) for the classical ground state
or at the mean-field level, where the correlation function
in the numerator is factorized. The spin current operator
defined in equation (14) is manifestly antisymmetric un-
der the exchange of the labels, as it should be. It implicitly
depends on the spin configuration via the unit vector γij ,
so that in twisted spin configurations the spin current op-
erator is a rather complicated functional of the exchange
couplings. The fact that the current operator of an inter-
acting many body system is a complicated functional of
the interaction is well known from the theory of interacting
Fermi systems [7]. In particular, when the effective inter-
action does not involve densities only the construction of
the current operator is not straightforward [8].

For explicit calculations we use a representation of
Ĩi→j in terms of spin operators quantized in local ref-
erence frames with the z-axes pointing along m̂i, i.e. we
decompose

Si =
∑

α=1,2,3

Sα
i eα

i , Sα
i = eα

i · Si , (18)



560 The European Physical Journal B

with e3
i = m̂i. One still has a freedom in the orientation

of the transverse basis {e1
i , e

2
i }, which can elegantly be

parametrized, if one uses spherical basis vectors e±
i = e1

i ±
ie2

i . We can then write

e+
i = eiωi→j ẽ+

i , (19)

where {ẽ1
i , ẽ

2
i } is the special transverse basis where ẽ2

i =
ẽ2

j = γij . With this notation we obtain the following ex-
pression for the spin current operator

Ĩi→j =
Jij

2i

[
S−

i S+
j ei(ωi→j−ωj→i)

m̂i + m̂j

2

−S−
i S−

j ei(ωi→j+ωj→i)
m̂i − m̂j

2
+S

‖
i S−

j eiωi→j (γij × m̂i)

−S−
i S

‖
j eiωj→i(γij × m̂j) − H.c.

]
, (20)

where S±
i = S1

i ± iS2
i = e±

i · Si are the usual ladder op-
erators and S

‖
i = S3

i = m̂i · Si. The third and fourth
terms in this expression couple longitudinal and trans-
verse degrees of freedom and therefore do not contribute
to leading order in a spin-wave calculation. The first and
second summand are dominant for ferromagnetic and anti-
ferromagnetic rings respectively and have been discussed
in detail in [1] and [2]. For a magnetic field that varies
smoothly as one moves through the system, the magnetic
moments on neighboring lattice sites are almost collinear,
so that in both cases the component of the naive “current
operator” Ii→j along the local order parameter is the one
that really corresponds to the transport of magnetization.
In [1] we had come to the same conclusion by invoking
the gauge freedom in the choice of the transverse axes of
quantization. Rotating the coordinate frame around m̂i

corresponds to the gauge transformation

ωi→j → ωi→j + αi, S±
i → S±

i e±iαi . (21)

By this gauge freedom one is then let to identify the
derivative of the Hamiltonian with respect to the gauge
field ωi→j as the relevant current operator. A comparison
with equation (20) shows that this is indeed the longitu-
dinal component of Ii→j . A more general gauge invariant
formulation of the Heisenberg model is discussed in [9]
(see also [10]). In these works, an O(3) gauge field Ai→j

was introduced in a rather formal manner to write the
Heisenberg model in a gauge invariant way and to obtain
the spin stiffness tensor by means of differentiation with
respect to the gauge field [11].

Note that the procedure adopted in this section is not
restricted to the isotropic Heisenberg interaction of the
Hamiltonian (1). For a general bilinear spin-spin interac-
tion of the form

Ĥ =
1
2

∑

i,j

Si · J ijSj −
∑

i

hi · Si, (22)

where J ij is now a 3× 3 matrix with JT
ij = J ji, the equa-

tion of motion (2) remains valid, if the expression for Ii→j

is replaced by
Ii→j = Si × J ijSj . (23)

With this notation, equations (14–17) still hold (provided
Jij is replaced by the matrix J ij) and part of the naive
current operator Ii→j can again be absorbed into the def-
inition of an effective magnetic field.

5 Conclusion

Let us emphasize again that our main point is rather sim-
ple: The microscopic equation of motion (2) contains only
the (lattice) divergence of the spin current operator, which
is not sufficient to fix its rotational part. A certain part
of the operator

∑
j JijSi × Sj leads to a renormalization

of the effective magnetic field and therefore should not be
included into the definition of the spin current operator,
see equations (10–17). The physical spin current, which
corresponds to the motion of magnetic dipoles, must be
defined such that a purely static twist in the ground state
spin configuration of a classical Heisenberg magnet is con-
sidered to be a renormalization of the effective magnetic
field, and does not contribute to the spin current. To fur-
ther substantiate our proposal for an effective current op-
erator, it would certainly be insightful to look for a more
microscopic derivation by starting from a model involving
charge degrees of freedom. It would also be instructive to
explicitly investigate non-equilibrium situations with time
dependent magnetizations.
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